
siemens.com/eda

DIGITAL INDUSTRIES SOFTWARE

What’s next for System
Verilog in the upcoming
IEEE 1800 standard
Executive summary
The last revision of the SystemVerilog LRM was completed in 2016 and published as IEEE
1800- 2017. In the time since, tool vendors have continued to extend and make clarifying
changes to their implementations. That leaves users and other tool vendors with unclear
specifications on how to interpret SystemVerilog code. The next revision of the standard
(P1800-2023) intends to address many of these issues to keep the language current. This
paper reviews some of the high-level goals for the next revision as well as highlights a few
key enhancements.

Dave Rich
Siemens EDA

http://www.siemens.com/eda

Contents

I. Inroduction 3

II. Enhancements 4

A. Extending coverpoints (Mantis 4703) 4

B. Unpacked array mapping function (Mantis 7610) 4

C. `ifdef Boolean combination of identifiers (Mantis 1084) 5

D. Add support for multiline strings (Mantis 7308) 5

E. Real number modeling (Mantis 7295 and 7669) 5

F. Chaining of method calls (Mantis 2735) 6

G. Adding static ref arguments (Mantis 2583) 6

III. Errata 7

A. @(clocking_block_name) is unequal to its associated
clocking event (mantis 7172) 7

B. Non-integral function actual argument allowed in
a constraint expression (mantis 2841) 7

IV. Clarifications 8

A. Unclear which compiler directives must be alone on
a line (Mantis 1014) 8

B. Definition of term “blocking statement” (Mantis 225) 8

C. Packed array shortcut – (Mantis 325) 8

V. Conclusion 9

References 9

Siemens Digital Industries Software 2

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

Between the Accellera Systems Initiative and the
IEEE, there have been seven revisions of the
SystemVerilog Language Reference Manual (LRM)
over the past 20 years1. Five of those revisions were
in the first 10 years. Many users avoid adopting
SystemVerilog because feature support from
different tools and vendors of the rapidly changing
LRM had been so inconsistent. To this day, people
continue using Verilog-19952 syntax and avoid using
features added by Verilog-20013 (e.g., ANSI-style
ports and the power operator). So, brakes were put
on the SystemVerilog LRM process, giving vendors a
chance to catch up and giving users the stability
they wanted. The last time any of the IEEE
SystemVerilog technical committees met to add
changes to the LRM was at the end of 2016. The
result of this work was the publication of the IEEE
1800-20174 standard.

However, technology never stands still. Over the last
several years, vendors have made extensions to
their tools based on demands from customers, and
the users are left with a hodgepodge of features
with no or incomplete documentation. For example,
some tools allow many more built-in functions (like
$sformatf) to be used in a constant expression even
though the LRM explicitly does not allow it. You
won’t know which ones your tool supports until you
try them. Other users simply won’t wait for any
extensions and begin working around language
limitations by creating extra code packages or
incorporating other languages into their flow
(Chisel, Perl, Python, Ruby,…). Don’t expect
SystemVerilog to be the number one language
choice for every design and verification project out
there. Still, every language must evolve to improve
and stay relevant. And developers want to protect
their investment in the verification IP they develop
for as long as possible.

Under the auspices of the IEEE, a project “P1800”
to craft the next revision of the SystemVerilog
was created in late 2019 [4]. “P” is for “Proposed

standard” and the current plan is to finalize the work
and make it available to the public in 2024. After a
two-year delay due to the worldwide pandemic, a
“Working Group” made of end users and tool vendor
companies formed to submit issues on behalf of
themselves or indirectly through affiliated compa-
nies. This IEEE working group uses an issue tracking
system called Mantis5. The group enters issues into
the Mantis database that are categorized into a few
major types:

• Enhancements – New features that extend
the capabilities of the current language. These
enhancements may already be implemented
in some tools or be completely new to the
language. In many cases they have been
“borrowed” from other languages, so their
use models are well known.

• Errata – Obvious mistakes in the current LRM. They
could be as small as typographical editing errors
or as large as contradictions in the text between
LRM sections because a previous update failed
to capture all places that needed to be changed.
Sometimes the current wording of the LRM is
obviously incorrect and tools have implemented
what the LRM should have said in the first place.

• Clarifications – Missing or misleading text for a
particular use case where the LRM is ambiguous.
This normally does not involve a change to a tool’s
behavior unless tools implemented something
very different from what was originally intended.

As of the publication date of this paper, 26 enhance-
ments, 109 errata, and 61 clarifications have been
approved by the committee for the next revision of
the standard. These categories are not always distinct.
Many enhancements uncover existing errata issues
or require other clarifications. Sometimes an issue
filed as an enhancement becomes just a clarifica-
tion. The sections that follow highlight just a few
significant issues from each category.

I. Introduction

Siemens Digital Industries Software 3

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

A. Extending coverpoints (Mantis 4703)
One of the most often requested enhancements,
and my primary motivation for getting this project
started is extending covergroups. Covergroups
without inheritance is considered by many an unfin-
ished feature. When extending a class, you can add
new class members and override existing ones in
the base class; the same holds true for constraints in
classes. When embedding covergroups in classes,
they are effectively additional class members. It
seems obvious that the same principles should have
been applied to covergroups. This comes up
frequently when creating verification IP base class
libraries and these libraries need to be extended to
handle customizations for different usage
configurations.

Two of the most critical features enabled by this
enhancement are:

• Adding a new coverpoint in an extended class
and then crossing it with an existing coverpoint in
the base class. Currently, you must replicate the
coverpoint in the base class to the extended class
and cross it with the new coverpoint.

• Replacing the bin structure of an existing cover-
point or removing it entirely.

The enhancement would allow syntax such as:

 class pixel;
 bit [7:0] level;
 enum {OFF,ON,BLINK,REVERSE} mode;
 covergroup g1;
 a: coverpoint level;
 b: coverpoint mode;
 endgroup
 function new();
 g1 = new;
 endfunction
 endclass

 class colorpixel extends pixel;
 enum {red,blue,green} color;
 covergroup extends g1;
 b: coverpoint mode { // the
 coverpoint ‘b’ from the base class
 is changed
 ignore_bins ignore = {REVERSE};
 }
 cross a color; // ‘a’
 comes from the base class
 endgroup
 endclass

B. Unpacked array mapping function
(Mantis 7610)
SystemVerilog allows you to work with arrays
(aggregates) as a whole. However, it limits you to
comparison and assignment operators, as well as
working only on unpacked arrays having equivalent
element types. Borrowing from other languages
such as Python, the array map function allows you
to cast each element to a new type, as well as
perform any operation on each element.

Like the other array manipulation methods (see
section 7.12 of 4), the map() method iterates over
each element using a with() expression and
provides implicit variables item and item.index. It
returns a new array with each element having the
type of that expression. Here are a few examples:

int A[3] = {1,2,3};
byte B[3];
int C[3];
// assigns and casts array of int to
an array of byte
B = A.map() with (byte’(item));
// increments each element of the
array (use b instead of item)
B = B.map(b) with (b + 8’b1);
// B becomes {2,3,4}
// Add two arrays
C = A.map(a) with (a + B[a.index]);
// C becomes {3,4,5}

II. Enhancements

Siemens Digital Industries Software 4

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

C. `ifdef Boolean combination of identifiers
(Mantis 1084)
This request precedes the publication of the first
SystemVerilog LRM [3]. Enhancements related to the
preprocessor have been very difficult to address
because of many ambiguities in this area of the
existing LRM (See Mantis 1014 in the Clarifications
section).

Verilog has a simple `ifdef scheme where you
specify a single macro name to test if it is defined or
not. There is no way to combine testing multiple
definitions with nesting multiple `ifdefs or
creating intermediate define macros. Assuming
there are two potential macro definitions A and B,
in the existing Verilog LRM you would have to write

// AND
`ifdef A
 `ifdef B
 `define A_and_B
 `endif
`endif
`ifdef A_and_B
 // code for AND condition
`endif
// OR
`ifdef A
 `define A_or_B
`endif
`ifdef B
 `define A_or_B
`endif
`ifdef A_or_B
 // code for OR condition
`endif

With this enhancement, you can use a simple
Boolean expression enclosed in parentheses.

`ifdef (A && B)
 // code for AND condition
`endif
`ifdef (A || B)
 // code for OR condition
`endif

Note the value of the definition is not being tested,
only the state of its definition. In C/C++, this would
be equivalent to:

#if defined(A) && defined(B)

D. Add support for multiline strings
(Mantis 7308)

string x = “””
This is one continuous string.
Single ‘ and double “ can be placed
throughout, and
only a triple quote will end it.
“””

This feature makes it easier to write informative or
self-documenting messages so they can be easily
read and maintained within the source code.

The enhancement request seemed to be simple on
the surface wound up entangled with many older
issues surrounding it.

• Multi-line string literals in a text macro
(Mantis 1397)

• Special characters in strings (Mantis 1507)

• “Printable” characters (Mantis 7562)

E. Real number modeling (Mantis 7295 and 7669)
SystemVerilog was formed around the concept of
being a digital logic design and verification language.
That means most constructs and operators expect
expressions to break down into discrete integral or
Boolean values. Constraints, assertions, and cover-
groups rely heavily on equality expressions. Real
numbers introduce irregularities with expressions like
(0.1 + 0.2) == 0.3 can never evaluate true because
these floating-point values cannot be accurately
represented in a binary number system.

Adding real numbers to random variables and
constraints involves lifting the existing restrictions
from integral to allow for real types. Distributions
of floating-point ranges can only deal with weights
over the entire rage using [1.0:3.0]:/weight.
It makes no sense to allow the other distribution :=
syntax which would have applied the weight to
every value in the range. There are an infinite
number of discrete values in the range between
two real numbers; thus, the weight of the range
would be infinite.

Adding real numbers to covergroup requires a little
more consideration. Coverage bins by their very
nature represent discrete sets of values. A new option

Siemens Digital Industries Software 5

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

real_interval helps break up floating-point ranges
into nonoverlapping bin sets.

coverpoint r {
 type_option.real_interval= 0.02;
 bins b[] = {[0.75:0.85]};
 // 10 bins
 // b[0] 0.75 to less than 0.76
 // b[1] 0.76 to less than 0.77
 // . . .
 // b[9] 0.84 to less than or
 equal to 0.85
}

F. Chaining of method calls (Mantis 2735)
This feature allows you to use the result of a func-
tion to serve as an intermediate variable for
selecting a member of the result. It is mainly used
when the result is a handle to a class.

It may come as a surprise that this was not already
included in the LRM as many tools have been support-
ing some form of it for a while. Now it is properly
defined. One of the major issues with this feature is
keeping backward compatibility with Verilog. It
allows hierarchical reference to static variables de-
clared inside a function from outside that function.
To distinguish a hierarchical reference from an inter-
mediate variable, you must use parentheses “()” in
the function call even when there are no arguments.

class A;
 int member=123;
endclass
module top;
 A a;
 function A F(int arg=0);
 int member; // static variable
 uninitialized value 0
 a = new();
 return a;
 endfunction
 initial begin
 $display(F.member); // 0 – No
 “()”, Verilog hierarchical reference
 $display(F().member); // 123 – With
 “()”, implicit variable
 end
endmodule

The first $display statement prints the value of a
hierarchical reference to the static variable
top.F.member, whose value is 0. The second

$display statement calls the function F, whose
return value gets used to select the class A variable
member, whose value is 123.

G. Adding static ref arguments (Mantis 2583)
A ref argument of a time-consuming task tracks
values updating between the actual arguments
passed into a task and formal arguments defined
inside the task during the lifetime its call. In
contrast, actual input argument passes its value
only at the point in time when the task gets called.
Implementing a ref argument places more restric-
tions than passing an arguments value because the
code inside the task has no knowledge of the actual
argument’s declaration. One restriction is the actual
and formal argument’s type must match; it is not
enough just to be assignment compatible. Another
restriction is the task must assume the actual argu-
ment’s lifetime is automatic. The consequence of
that means there are several other restrictions on
what you cannot do with variables declared with
automatic lifetimes. An argument passed by refer-
ence cannot:

• Be the target of a nonblocking assignment.

• Have a reference on the LHS or RHS of force
statement.

• Be referenced from within a fork join_any/
join_none process

This enhancement adds a static qualifier to a
formal ref argument so the task or function can be
assured the actual argument has a static lifetime
(it would be an error to pass a variable with an
automatic lifetime as an actual argument).

module top;
 function void monitor(ref static
 logic arg);
 fork // the reference to arg only
 becomes legal with a static
 qualifier
 forever @(arg) $display(“arg
 changed at time %t”, arg,
 $realtime);
 join_none
 endfunction
 logic C;
 initial monitor(C);
endmodule

Siemens Digital Industries Software 6

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

A. @(clocking_block_name) is unequal to its
associated clocking event (mantis 7172)
The current LRM has this brief example in section
14.10 (Clocking block events)

clocking dram @(posedge phi1); inout
data;
output negedge #1 address; endclocking

The clocking event of the dram clocking block can
be used to wait for that particular event:

@(dram);

The preceding statement is equivalent to @
(posedge phi1).

However, this cannot be true since section 14.13
says the dram event gets triggered in the observed
region and the posedge phi1 gets triggered in
the active region. So, the example was expanded
with a more detailed explanation:

always @(posedge phi1) $display
(“clocking event”);
always @(dram) $display(“clocking
block event”);

The first always procedure in the preceding
example executes in the same Active or Reactive
event region as the positive edge of phi1. In
contrast, the second always procedure executes
after the Observed region following that Active or
Reactive event region. This behavior can be used to
avoid race conditions when sampling input data,
see 14.13 for more details.

B. Non-integral function actual argument
allowed in a constraint expression (mantis
2841)
The current LRM says this about constraints in
section 18.3:

“Constraints can be any SystemVerilog expression
with variables and constants of integral type
(e.g., bit, reg, logic, integer, enum, packed struct).”

Section 18.5.13 (Constraint guards) already contra-
dicts this with object handles, but there are many
scenarios where there is not a problem using
non-random non-integral expressions. For example,
a real typed threshold variable requires the user to
create and initialize a separate integral variable.
Only this can be used in the constraint.

class A;
 rand bit [8:0] randvar;
 real threshold;
 int intvar;
 function void pre_randomize();
 intvar = int’(threshold);
 endfunction
 constraint c{ randvar < intvar; }
endclass

Mantis 2841 allows the above to be written as:
class A;
 rand bit [8:0] randvar;
 real threshold;
 constraint c{ randvar <
 int’(threshold); }
endclass

III. Errata

Siemens Digital Industries Software 7

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

IV. Clarifications

A. Unclear which compiler directives must be
alone on a line (Mantis 1014)
Like Mantis 1084, this is a clarification request
carried over from the Verilog 1364 standardization
effort. Compiler directives have always been a weak
point and considered underspecified in the LRM.
Another enhancement request for multi-line strings
brought the priority of this issue to the forefront.
One of the most common places this comes up is
with conditional compilation:

`ifdef NAME text `endif

Support for this structure of directives was unclear
in the existing LRM and has been clarified. Most
tools have already been supporting this.

B. Definition of term “blocking statement”
(Mantis 225)
One of the oldest issues to be clarified, the term
“blocking” is well understood by experienced users
but was never properly defined. This is particularly
a problem because the word “block” is a homonym
with multiple unrelated meanings. Within this
standard, a “block” could be used as a noun to
describe a set of connected conceptual elements,
or as a verb, a construct that suspends execution
of a process.

The term “blocking statement” in most cases refers
to a construct having the potential to suspend a
process. But this is further complicated using the
terms “non-blocking assignment” which is never a
blocking statement, and a “blocking assignment”
which is only sometimes a blocking statement.

The three terms, “blocking statement”,
“non-blocking assignment”, and “blocking assign-
ment” have been clarified in the upcoming standard,
as shown in by the illustrative examples below:

 A <= #1 2; // non-blocking assignment,
 not a blocking statement
 A = 3; // blocking assignment,
 not a blocking statement

 A = #4 5; // blocking assignment,
 a blocking statement

C. Packed array shortcut – (Mantis 325)
This issue originally started out as an enhancement
request. Verilog declares array ranges with pairs of
index values. For packed arrays or integral vectors,
the left index value represents the most significant
bit (MSB), and the right index is the least significant
(LSB). Integral vectors are normally declared using a
LSB 0 bit numbering scheme when the index of the
LSB is 0 (or little bit endian), and the index of the
MSB is the width of the vector minus 1. Thus, the bit
index position i represents the 2i value of the vector.

 bit [7:0] v = 8’b10000000; // 8-bit
 wide vector, v[7] = 1, 27 = 128

Unpacked arrays are also declared with pairs of
index values. However, since most references to
unpacked arrays only select one element at a time,
or select the entire array as a whole, element 0’s
position is not as important. It does matter when
loading the array from an external file or streaming
to another array with a different index ordering.

SystemVerilog has a shortcut for declaring unpacked
arrays ranges with a single number, as in C/C++. The
following two declarations are equivalent:

int A[0:99];
int A[100]; // This shortcut implies
that the left index is 0

Note that int is a shortcut for bit signed [31:0] with
the index 0 bit being the LSB. There are also several
implicit packed declarations that use the index 0 for
the LSB numbering (packed structs and unions,
concatenation expression part selects). This
enhancement request asked for the same shortcut
syntax for declaring packed arrays with a single
number. For example:

bit [8] v = 8’hab; // Proposed
shorthand for bit [7:0] v = 8’hab;

Siemens Digital Industries Software 8

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

But there was uncertainty as to whether the shortcut
should be little bit endian to match packed arrays or
big bit endian to match the index ordering of the
unpacked array shortcut. In the end, the committee
decided the potential confusion this enhancement

This paper has presented just a few of the many
changes in the upcoming IEEE SystemVerilog stan-
dard. I have pointed out the process the Working
Group goes through to address each individual
issue. Many issues the group goes through and not
discussed here require no changes because they
were found to be already addressed by other issues,
unnecessary because they were easily covered by
other features, or out of scope for the current
updated standard proposal. Note the P1800-2023 is
not a formally approved IEEE standard. All the
features mentioned here are subject to final IEEE
balloting approval.

would create was not justified and in fact the LRM
now provides further clarity stating the array decla-
ration shortcut only applies to unpacked arrays.

V. Conclusion

References
1. Goering, Richard. “Successor to Verilog approved as Accellera standard,” 4 June 2002. [Online].

Available: www.eetimes.com/successor-to-verilog-approved-as-
accellera-standard. [Accessed 26 October 2022].

2. “IEEE Standard Hardware Description Language Based on the Verilog® Hardware Description
Language,” in IEEE Std 1364-1995, pp.1-688, 14 Oct. 1996.

3. “IEEE Standard Verilog Hardware Description Language,” in IEEE Std 1364-2001,
pp.1-792, 28 Sept. 2001.

4. “IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification
Language,” in IEEE Std 1800-2017, pp.1-1315, 22 Feb. 2018.

5. Accellera. “Accellera Mantis Database,” [Online].
Available: accellera.mantishub.io/my_view_page.php. [Accessed 25 October 2022].

Siemens Digital Industries Software 9

White Paper – What’s next for System Verilog in the upcoming IEEE 1800 standard

https://www.eetimes.com/successor-to-verilog-approved-as-accellera-standard/
https://www.eetimes.com/successor-to-verilog-approved-as-accellera-standard/
http://accellera.mantishub.io/my_view_page.php

Siemens Digital Industries Software helps organizations of
all sizes digitally transform using software, hardware and
services from the Siemens Xcelerator business platform. Siemens’
software and the comprehensive digital twin enable companies
to optimize their design, engineering and manufacturing
processes to turn today’s ideas into the sustainable products of
the future. From chips to entire systems, from product to process,
across all industries, Siemens Digital Industries Software –
Accelerating transformation.

siemens.com/software
© 2023 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

85267-D3 5/23 H

Siemens Digital Industries Software

Americas: 1 800 498 5351

EMEA: 00 800 70002222

Asia-Pacific: 001 800 03061910

For additional numbers, click here.

http://www.siemens.com/software
http://www.siemens.com/software
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://siemens.com/disw-contact-sales

